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Indirect Boundary Element Method Applied to
Generalized Microstripline Analysis with
Applications to Side-Proximity
Effect in MMIC’s

Keren Li and Yoichi Fujii, Member, IEEE

Abstract—A novel analysis of the electrical properties of the
microstrip-like structures with generalized configuration by
means of the indirect boundary element method (BEM) is pro-
posed. In this method, the basic boundary-integral equation is
derived by cheosing an appropriate fundamental solution and
the numerical calculation is done by considering the root-sin-
gularity of boundary distribution on the strip conductor. As an
application, the proximity effects in MMIC’s are calculated. By
curve-fitting, the numerical results are expressed in a polyno-
mial suitable for CAD of MMIC’s.

I. INTRODUCTION

ECENT developments in the field of monolithic mi-

crowave integrated circuits (MMIC’s) permit us to
design and to construct broadband circuits with low cost,
high performance, small sizes, light weight and high re-
liability [1]. The lines interconnecting the devices in the
MMICs are usually microstriplines (MSL) and coplanar
waveguides (CPW). In highly integrated circuits, the
“‘proximity”’ effects arise in MMICs as shown in Figs.
1(a) and (b), as is pointed out by Pucel [2]. Fig. 1(a)
shows a configuration with an interaction between the
lines (as a typical case, between the line and the ground
plane). Fig. 1(b) shows a configuration in which changes
of the characteristics arise when the conductor strip of
MSL is approaching to the edge of a finite dielectric sub-
strate (a chip). In this paper, this change is called the side-
proximity effect. For both cases of Fig. 1(a) and (b), the
analysis of the proximity effect is necessary for the ac-
curate design of MMIC’s. The effect as shown in Fig.
1(a) has been analyzed by means of the rectangular
boundary-division-method proposed by one of the authors
[3]. However, the side-proximity effect is difficult to be
analyzed with this method and even with the well-known
methods such as the conformal mapping techniques and
the spectral domain method [4], because these structures
have special configurations and special boundaries.
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Fig. 2. Microstripline with generalized configuration.

In this paper, we propose a new method of analysis
based on the indirect boundary element method (BEM)
for microstriplines with generalized configuration as
shown in Fig. 2. First, a simple boundary integral equa-
tion is derived by choosing an appropriate set of funda-
mental - solutions, the square-root-singularity in the
boundary distribution on the strip conductor is removed
by an appropriate transformation and then the numerical
analysis is carried out with high accuracy and with less
CPU time.

As an application, the proximity effect in the MMIC is
analyzed and by the curve-fitting, the numerical results
for 50 © and 75 Q lines with GaAs-substrate are given in
polynomials suitable for CAD of the MMIC'’s.
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II. INpIRECT BEM ANALYSIS

The boundary element method (BEM) [5] is a numeri-
cal technique consisting of the following steps:

1) Transforming the ordinary differential equation into
a boundary-integral equation.

2) Dividing the boundaries as in the case of the divi-
sion of region in finite element method (FEM). The
boundary integral equation is divided into a set of linear
equations of the boundary values at the nodes on the finite
discrete boundary.

3) The boundary values are obtained by numerically
solving the linear equations.

The number of the data processed in the BEM is small
but the accuracy is generally much higher than that in
FEM. This is because the BEM makes the discretization
only on the boundary, not over the region. So the BEM
is applicable to a problem which has infinite regions or
singularities to which the FEM is difficult to be applied
[5]-[10].

In order to apply the BEM to the analysis of the side-
proximity effect which appears in a structure as shown in
Fig. 1(b), we first derive a boundary integral equation for
the generalized MSL configuration. As shown in Fig. 2,
there are two regions, finite and infinite. The quasi-TEM
wave approximation is adopted to characterize this line
because the dimensions in MMIC’s are much smaller than
the operating microwave wavelength [3], [11]. Using this
approximation and letting u#(x, y) be a potential distribu-
tion function in the cross section of line, we solve an
equivalent two-dimensional boundary value problem as
shown in Fig. 3(a) and obtain u as

v? & + ik 0 inQ (1a)
u = —= — =
o T oy u i a
u=1u on T (1b)
g=0du/dn=9g onT, (1c)

where the variables with bar denote the values on the
boundaries. The boundary integral equation for (la) is
given [5]-]10] by the equation as

%u, + SF ug* dI" = S qu*dl’  forpointion T (2a)
r

Viu* + 8G) = 0 (2b)

where & is Dirac’s delta-function and u* and g* are the
fundamental solutions of this system.

In the same way, the boundary integral equation for
each region shown in Fig. 3(b) is solved. On the boundary
I’/ between two regions, the boundary conditions are given
as follows:

u® = u® =y

on I (3a)

eq® + qg® = -6 onT, (3b)

where the so-called indirect boundary variable o means
the distribution of free charge density on the boundary T'.

L
()

Fig. 3. (a) Two-dimensjonal boundry value problem. (b) Boundary value
problem with two regions.

Starting from (2), g is substituted by the indirect bound-
ary variable o in (3b) by using the boundary conditions
(3a) and (3b). Then by using the indirect boundary method
and by taking the outer boundaries to infinity, a boundary-
integral equation for # and ¢ on the intermediate boundary
I'; is derived as follows:

eul); + Ae S u(l)g* dl’
Ty

= - S ou* dTI’ for the point ionI'; (4)
Iy

where €, = (¢; + €)/2 and Ae = (¢, — €,).

In the case of the problem as shown in Fig. 2, we define
the fundamental solution u* in the semi-infinite region as
follows:

1 1 1 !
u*=gln;—gn%=%ln%, (5a)
where
r=va-x)+(y-n
and
=N =x) + () (5b)

The boundary integrals on all the boundaries except the
intermediate boundary I'; vanish. Thus the boundary-in-
tegral equation is given only on I'; as follows:

ug* drI’

eu; + Ae S
Iy

= — Sr ou* dTI’ for point i on T',. ©)
I

From this boundary-integral equation (6), a set of linear
equations is obtained by dividing the boundaries into a set
of finite linear elements and by taking the linear approx-
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imation both for the boundary division and for the bound-
ary distributions u and o as follows:
‘ N

Elui‘l'AE ZHU
.J=1

=_Z (=1,

j=1

» N), )

where A and G are the coeflicient matrices determined by
(6). Using the expression for the coefficient matrices H
and G, (7) can be rewritten in a simple form as follows:

Hu = Go. ®)
where ‘
e+ Ael; i=j .
Hij = . : and G,'j = _GIJ (9)

The coefficient matrices H and G are derived analytically
as are shown in Appendix I.

The MSL has square-root-singularities in the distribu-
tion since the indirect boundary variable ¢ is the distri-
bution of free charge density on the boundary I'. So a
serious computational error may take place if the distri-
bution of ¢ is calculated directly by numerical computa-
tion. In this method of numerical computation, therefore,
we transform o as follows: ~

o' (x)
V1 = @x/wy

where w is the width of conductor strip. By using this
transformation, the computational error can be avoided
because the integral of o(x) is convergent for finite values
of ¢'(x). The discretization of ¢'(x) is also carried out for
o(x). Thus a set of linear equations for ¢’ in (9) is given
as follows: ,

o(x) = (10)

Hu = G'o'. (11)

The coeflicient matrix G’ is numerically obtained (see Ap—
pendix II).

From the physical requirement, the distributions u and
o' in (10) must satisfy the boundary conditions as follows:

W=V, (12a)
o =0 (12b)

It should be noted that the indirect boundary distribu-
tion ¢’ in (12b) can be calculated only on the conductor
strip. This is the reason why the indirect BEM, instead of
the conventional BEM, is utilized in this paper.

on the strip conductor, and

except on the strip conductor.

III. AnaLysIs OF SIDE-PrRoXiMITY EFFECT

The method proposed above is applicable to analyze the

side-proximity effect. First, the coordinates of a micro-
strip structure as shown in Fig. 1(b) are defined as shown
in Fig. 4(a). The boundary T is divided into four parts.
Numbers of each element are N, N,, N3 and N,, respec-
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Fig. 4. (a) x-y coordinates for analysis. (b) Division of boundaries.

tively, and N = N, + N, + N, + N,. At the non-smooth
points on the boundary, two neighboring points necessary
for the calculation are taken on both sides of this point.
By the discretization and by using the transformation in
(10), a set of linear equations as (11) is obtained. The line
charger per unit length on the strip Q is then given by ¢’,
as follows: : /

/2
w , LV .
Q= Lodl‘—-z-g_w/za <2 s1n0>d0

Therefore the line capacitance C per-unit length is given
as ‘

(13)

Q

c=1y

=0 - (14)
where V, is unity. Letting C, be the line capacitance of a
line per unit length when the dielectric substrate is re-
moved off, the characteristic impedance Z and the phase
velocity factor X /A of the line under the quasi-TEM ap-
proximation are given by the following equations [11]:

1

= —— (15a)
VgV CCO

A G

— = |—= 15b

" c (15b)

where v, is the velocity of light in free space, Ay and A
are the wavelength in free space and the guided wave-
length of the line, respectively.

IV. NUMERICAL RESULTS

The numerical analysis was first carried out for micro-
striplines without considering the'Side-proximity effect in
order to show the effectiveness of our method. The nu-
merical results are consistent with the results in other pa-
pers as are shown in Table I.

Fig. 5 shows an excellent convergence of the numerical
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TABLE 1
THE COMPARISON OF THE CHARACTERISTIC IMPEDANCE FOR MSL WITHOUT SIDE-PROXIMITY EFFECT
Parameter of MSL* Yamashita [3] Pucel [11] Yamashita [12] Schneider [13] This Theory

e, = 1.00,w/h=1.0 126.20 126.61 126.7 126.55(126.60%*%*) 126.43

€ =4.20,w/h =04 105.14 — 106.0 — 105.42

€, = 12.9, w/h = 0.240 74.98 — - — 75.00

e =129, w/h =0.732 49.86 ~— — — 50.00

*e, = 1.0, **Measured Data.
a —~
5 rér ith’ idering singularit G
UNJ Ps with considering singularity Siol
g 72t Y
=
% x_ without i Nz No Iﬁl__l sok
= considering 2 =
o 68+ singularity Ny 5
Z u=0 ground x 5 60
x 66r wh = 1.0, dw = 25 £
5 =4.2,8=10 b 401
< 64 Ny =5, Ny=13, Np= 13 Q
% :li 1 ! ‘ \ } \ | \ | | | g 20 asymmetrical st, —~——symmetrical 51,
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Fig. 5. Convergence of the numerical results for characteristic impedance

as a function of the division number on the conductor strip.
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Fig. 6. (a) Symmetrical microstrip-like structure. (b) Asymmetrical mi-
crostrip-like structure.

results for calculating the characteristic impedance as a
function of the division number of the conductor strip by
removing the singularity when compared with the data
without considering the singularity.

The numerical analysis for the structures considering
the side-proximity effects are carried out on symmetric
and asymmetric microstrip structures as shown in Fig. 6(a)
and (b). .

Figs. 7 and 8 show the side-proximity effect on the
characteristic impedance Z and on the phase velocity fac-
tor N/\o as a function of normalized distance from one
side of the substrate d / w. In this calculation, the dielec-
tric constant of substrate ¢; = 12.9 (GaAs) and w/h is
taken as a parameter. The solid lines show the results of

Fig. 7. Side-proximity effect of characteristic impedance taking w /A as a
parameter. .
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Fig. 8. Side-proximity effect of phase velocity factor A /A, taking w /h as
a parameter.

the asymmetric structure and the dotted lines are for the
symmetric one.

Fig. 9 shows the side-proximity effect in the asymmet-
ric structure taking the dielectric constant of the substrate
as a parameter.

From these numerical results, both the characteristic
impedance and the phase velocity factor are found to be
increased by several percent when the conductor strip is
approaching to the side of substrate, i.e., d/w becomes
approximately unity. But where the strip departs from the
side-edge as far as d/w = 3, the side-proximity effect
becomes negligible.

Fig. 10(a) and (b) show the numerlcal results of the
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Fig. 10. (a) Side-proximity effects of 50 © line. (b) Side-proximity effects
of 75 Q line.
- TABLE 11
THE COEFFICIENTS OF THE POLYNOMIALS IN (16) BY THE LEAST SQUARE METHOD
Coefflicients of For 50 © Lines For 75 Q Lines
the polynomials
in (16) ForZ/Z, For N/ Ny For Z/ Z, For A /Ao
ao 0.10260 0.35531 0.10795(+ 1)* 0.38488
a, —0.28356(—1) —0.97956(—2) —0.51306(—1) —0.18297(—1)
a, 0.42473(-2) 0.14674(~2) 0.13565(—2) 0.48318(~3)
a3 0.81551(—3) 0.27987(—3) 0.22557(—2) 0.80443(~3)

*Numbers in brackets (n) mean exponent: 10"

side-proximity effect for the 50 Q and 75 Q lines widely
used in microwave circuits. These results are applicable
to the design of MMIC’s and to the CAD of MMIC’s.
The numerical results for the characteristic impedance and
the phase velocity factor are also given in the simple
polynomials, obtained by the Ileast-squares-method,
shown as follows:

(16

where the a,’s are the coeflicients as shown in Table II.
The error of these formulae is less than one percent.

V. CONCLUSION

In this paper, a new method of analysis. based on the
indirect BEM which can remove the singularity of bound-
ary distribution in the microstrip-like structure is pro-
posed. The side-proximity effect of the microstriplines is
analyzed by using this method. From the numerical re-
sults, it is found that the characteristic impedance and
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Fig. 11 Various microstrip-like structures which can be analyzed by the
method proposed in this paper.

phase velocity factor are considerably affected by the side-
proximity effect. The numerical results for 50  and 75 2
lines are also given in simple polynomial formulas suit-
able for the CAD of MMIC’s.

The ‘analysis proposed here is simple and convenient
for the analysis of the microstrip-like structures. It takes
only one minute of CPU time on a 16-bit personal com-
puter to obtain a set of results of the characteristic imped-
ance and the phase velocity factor with convergence of
less than one percent. This technique is also applicable to
various types of microstrip-like structures. For example,
it can be applied directly to the analysis of the structures
as shown in Fig. 11.

APPENDIX I
DERIVATIVES OF THE ANALYTICAL EXPRESSIONS OF THE
CoEFFICIENT MATRIX ELEMENTS H;; AND G;;

The elements of coeflicient matrices ﬁij and Gij from
(6) and (7) are given as follows:

Py

i

A
EU b2(£) q* dE +S ¢1<s>q*dz} (A1)
-1 Ty

o
G, =2 bEurdi + | dBurdtl (A2
2 (- Iy

where u* is the fundamental solution, T is a linear bound-
ary element, /; is the length of boundary element as shown
in Fig. 12 and &, ,(£) are linear interpolating functions.
For simplicity, the following integrals for the elements
are defined as "

L A
R =5 UD Pr(E)u* ds}, np =3 Un $aE)u* d&}, |

(A3)
n b * @ k ®
gij' - 5 ¥ ¢I(£)u dé ’ glj = 5 ¢2(E)u dg
‘ (A4)

Thus the integrals in (A1) and (A2) are rewritten as fol-
lows:

" - hl(i)— hz(Jl)a Gij = glj—l + g(l) (AS)

§ \ point: (x‘_‘+1 yJ+1)

element =~ l+] n
coordinate j peint:(x.,y.)
< 37713
.\ \\
r i~1
. Y
point:
(xi’yi) X

Fig. 12. Division of boundaries and coordinates for analysis.

Because the fundamental solution u* defined in (5a) and
(5b) is expressed as the difference between two natural
logarithmic functions with the same form, the integrals
defined above in (A3) and (A4) can be derived only for
one of these logarithms. The other ones may be found by
the same process. Here we choose one of the functions of
the fundamental solutions as

1

u* = 5; In ; (A6)

Then

_ ou* 1 52

q* = o on (A7)

where
x =5 x + (5 x4 (A8a)
y =&y + 6By (A8b)

=V - x>+ (y - y)

(xSE + xm

~x)* + (ys& + yu — W)
Rj = {(xy = x)ys + (Y — ) (=X} /(;/2)
X =50 = %), ¥ =31 — %)
X = 306010 + ), Y= 3(V1 + )

in the coordinates as in Fig. 12.

Defining the directional vector and the outward normal
vector of linear element I'; be /; and n;, respectively, as
shown in Fig. 12, we have

PN SN2
REVCRRRYE

y, (A9a)

P S T
Lt T

and for simplicity the following variables are defined as

(A9b)

o_rm'lj _rm
[¢ 0] ———rm,a—lj/z

K — x)x + (Y — Y)Y

P = |1l = V&,

F

— ) + (v — )
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The integrals in (A3) and (A4) can be analytically ob-
tained and are given as follows:

1 ¥ ¢

1 L : 4
pb@e = __~ T p S S gr = L h@
Y st ) T ® 2xl, "
(A10)
1
g = _ LY S (1 ¥ &) Inrd
/ 2w 4 J-
b b1
= ——(Ins +I"? All
< 220 (ALD)
where

1
o | tre

-1 £% + 2a cos 8¢ + a?
= +tacosI, ¥ I,

! l
1@ = Sal % 1FHIn {5] (£ + 2a cos 6% + az)} d§

"

In(1 F2acosb + a*) — 2+ acosb)

+ (1 + a cos 0) (a sin 6)’; £ [(1 + a cos 6)*
— (a sin 6)’11, (A13)
where I, and I, are given as follows

!
1 .
- ;
! 1 &% 4 2a cos B¢ + a® ¢

1 can~! 1 + acosf
|a sin 6| |a sin 6|
— tan! —1 +acosf

‘ la sin 6|

£ +asing

|
I=S d
2 -1 &% + 2a cos B¢ + a? £

(Al4)

£2 + 2a cos 0t + a”

1
n £2 —2a cos ¢ + a*

(A15)

When the observation point i’ exists in the processed
element I';, the latter integrals become singular but they
are found by taking their limit as follows:

ht(l!)(2) =0

L 1
g? = 8 (1 -In() £ §>.

The integral in (A16) vanishes because the boundary
points i considered in the derivation of the boundary in-
tegral equation are excluded from the range of integral.

The other integrals in the fundamentals in (5a) can be
obtained substituting the image point i'(x; — y,) into the
expressions by the point i(x;, y;) and the elements of the
coeflicient matrices are given by the difference between
these two integrals.

(A16)

(A17)
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AppENDIX 11
DERIVATION OF THE EXPRESSIONS OF THE COEFFICIENT
MATRIX ELEMENTS G{j AND THE LINE CHARGE @ IN
UNIT LENGTH

A. Derivation of G,’j

Gj, is given as G;;:

G, = ”2—”{& b0 u* d + gr, q>1<e)u*d0} (A18)
w
8" = gﬂn_l $1(6) ¥ de},

g =2 U (0 u* dO} (A19)
2 (Jr,
G=g2, +gl (A20)

where x = (w/2) sin 8, dx = (w/2) cos 8 df, and ¢, ,(£)
are the interpolating functions of # which are defined as

¢i6) = 27 Gin 6,y —sin)  (A2la)

7
62(0) =

= — (sm 0 — (A21b)

2 sin 6;)

where w is the width of the strip conductor, / is the length
of boundary element T';.
Using the coordinates as shown in Fig. 12 in Appendix
I and substituting the fundamental solution u* which is
defined in (5) into (A19), we have
2

041
e - W S 0
&i; 87l Js, @1,2(0)

sin? @ — 2a sin 6 + o + 82

T ST 0 — 2asinf + o’ + B dg, (A22)
where
—-——xi (y_yl) (y+yl)
B = B . A23
“ W/2’ 6 W/2 ’ B /2 )

The integrals in (A22) are found numerically by the
9-point Gaussian numerical integral method in our paper.
B. Derivation of Line Charge Q in Unit Length

The integral of Q defined in (13) can be considered as
a special case of the integral in (A22) and is given as

2; 6% + sfhef) o A24)
where
1 041
M= — in 6, — sin 8) df
S; As, Se, (sin 6; ., — sin 6)
Af, Ag;
=—sinf,, +-— (A25a)
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s@ = X;} S::H (sin § — sin 6;) df
Al Ag,
= ~—A?j sin 6, + A_sj (A25b)
and A6, AS and AC are given by
Ab; =0, — 6 (A26a)
As; = sin 8, — sin 6, (A26b)
As; = cos ;. — cos 6,. (A26¢)
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