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Indirect Boundary Element Metlhod Applied to

Generalized Microstripline Analysis with

Applications to Side-Proximity

Effect in’ MMIC’S
Keren Li and Yoichi Fujii, Member, IEEE

Abstract–A novel analysis of the electrical properties of the
microstrip-like structures with generalized configuration by

means of the indirect boundary element method (BEM) is pro-
posed. In this method, the basic boundary-integral equation is

derived by choosing an appropriate fundamental solution and

the numerical calculation is done by considering the root-sin-
gularity of boundary distribution on the strip conductor. As an

application, the proximity effects in MMIC’S are calculated. By
curve-fitting, the numerical results are expressed in a polyno-
mial suitable for CAD of MMIC’S.

I. INTRODUCTION

R ECENT developments in the field of monolithic mi-

crowave integrated circuits (MMIC’S) permit us to

design and to construct broadband circuits with low cost,

high performance, small sizes, light weight and high re-

liability [1]. The lines interconnecting the devices in the

MMICS are usually microstnplines (MSL) and coplanar

waveguides (CPW). In highly integrated circuits, the

“proximity” effects arise in MMICS as shown in Figs.

l(a) and (b), as is pointed out by Pucel [2]. Fig. l(a)

shows a configuration with an interaction between the

lines (as a typical case, between the line and the ground

plane). Fig. 1(b) shows a configuration in which changes

of the characteristics arise when the conductor strip of

MSL is approaching to the edge of a finite dielectric sub-

strate (a chip). In this paper, this change is called the side-

proximity effect. For both cases of Fig. l(a) and (b), the

analysis of the proximity effect is necessary for the ac-

curate design of MMIC’s. The effect as shown in Fig.

1(a) has been analyzed by means of the rectangular

boundary-division-method proposed by one of the authors

[3]. However, the side-proximity effect is difficult to be

analyzed with this method and even with the well-known

methods such as the conformal mapping techniques and

the spectral domain method [4], because these structures

have special configurations and special boundaries.
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“‘Proximity” effect in MMIC’S. (a) Due to a ground
Side-proximity effect.
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Fig. 2. Microstripline with generalized configuration.

In tliis paper, we propose a new method of analysis

based on the indirect boundary element method (BEM)

for microstriplines with generalized configuration as

shown in Fig. 2. First, a simple boundary integral equa-

tion is derived by choosing an appropriate set of funda-

mental solutions, the square-root-singularity in the

boundary distribution on the strip conductor is removed

by an appropriate transformation and then the numerical

analysis is carried out with high accuracy and with less

CPU time.
As an application, the proximity effect in the MMIC is

analyzed and by the curve-fitting, the numerical results

for 50 f!l and 750 lines with GaAs-substrate are given in

polynomials suitable for CAD of the MMIC’S.
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II. INDIRECT BEM ANALYSIS

The boundary element method (BEM) [5] is a numeri-

cal technique consisting of the following steps:

1) Transforming the ordinary differential equation into

a boundary-integral equation.

2) Dividing the boundaries as in the case of the divi-

sion of region in finite element method (FEM). The

boundary integral equation is divided into a set of linear

equations of the boundary values at the nodes on the finite

discrete boundary.

3) The boundary values are obtained by numerically

solving the linear equations.

The number of the data processed in the BEM is small

but the accuracy is generally much higher than that in

FEM. This is because the BEM makes the discretization

only on the boundary, not over the region. So the BEM

is applicable to a problem which has infinite regions or

singularities to which the FEM is difficult to be applied

[5]-[10].

In order to apply the BEM to the analysis of the side-

proximity effect which appears in a structure as shown in

Fig. 1(b), we first derive a boundary integral equation for

the generalized MSL configuration. As shown in Fig. 2,

there are two regions, finite and infinite. The quasi-TEM

wave approximation is adopted to characterize this line

because the dimensions in MMIC’s are much smaller than

the operating microwave wavelength [3], [11]. Using this

approximation and letting U(X, y) be a potential distribu-

tion function in the cross section of line, we solve an

equivalent two-dimensional boundary value problem as

shown in Fig. 3(a) and obtain u as

‘2’=(:+$)’=0‘nQ ‘la)
U=li on rl (lb)

q = du/an = q on r2 (lC)

where the variables with bar denote the values on the

boundaries. The boundary integral equation for (la) is

given [5]-[ 10] by the equation as

I
>U[ +

J
U9* dr =

!
qu* dr for point ion r (2a)

r r

V2U* + a(i) = o (2b)

where 8 is Dirac’s delta-function and u* and q* are the

fundamental solutions of this system.

In the same way, the boundary integral equation for

each region shown in Fig. 3(b) is solved. On the boundary

rI between two regions, the boundary conditions are given

as follows:

u(l) = U(2) = ~(~) on r, (3a)

Clq “) + E~q(2) = _. on r[. (3b)

where the so-called indirect boundary variable o means

the distribution of free charge density on the boundary r.

(b)

Fig. 3. (a) Two-dimensional boundry value problem.
problem with two regions.

Starting from (2), q is substituted by the

(b) Boundary value

indirect bound-

ary variable o in (3b) by using the boundary conditions

(3a) and (3b). Then by using the indirect boundary method

and by taking the outer boundaries to infinity, a boundary-

integral equation for u and u on the intermediate boundary

1’1 is derived as follows:

~{u(l)i + A ~
[

u(z) q* dr
rl

._ J~u* dr for the point i on r, (4)
rl

where CI = (El + e2)/2 and A~ = (Cl – C2).

In the case of the problem as shown in Fig. 2, we define

the fundamental solution u* in the semi-infinite region as

follows:

11111’
u*=—in––—1=—=— ln~,

2X r 2X r’ 2X r
(5a)

where

r= d(X– XL)2 +(y–yi)2

and

r’ = J(x –xi)* + (y + yi)2. (5b)

except theThe boundary integrals on all the boundaries .

intermediate boundary rl vanish. Thus the boundary-in-

tegral equation is given only on r~ as follows:

—— —! ~u* dr for point i on r{. (6)
rl

From this boundary-integral equation (6), a set of linear

equations is obtained by dividing the boundaries into a set

of finite linear elements and by taking the linear approx-
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imation both for the boundary division and for the bound-

ary distributions u and a as follows:
I

u*

N
~=q

~lui + A~ ~ ~ijUj
j=l

= ‘:$, GijUj

E*.x

(i=l, ””’, N), (7)
U=o o “=0

(a)

where H and G are the coefficient matrices determined by

(6). Using the expression for the coefficient matrices H

and G, (7) can be rewritten in a simple form as follows:

Hu = Go. (8)

where

[

,.
EI + A ~Hii i=j

Hij =
A ~Hij

and Gij = - dij. (9)
i#j

The coefficient matrices H and G are derived analytically

as are shown in Appendix 1.

The MSL has square-root-singularities in the distribu-

tion since the indirect boundary variable rr is the distri-

bution of free charge density on the boundary r. So a

serious computational error may take place if the distri-

bution of a is calculated directly by numerical computa-

tion. In this method of numerical computation, therefore,

we transform a as follows:

d(x)
Cr(x) =

J1 – (2x/w)2’
(lo)

where w is the width of conductor strip. By using this

transformation, the computational error can be avoided

because the integral of a(x) is convergent for finite values

of u’(x). The discretization of o’(x) is also carried out for

u(x). Thus a set of linear equations for a’ in (9) is given

as follows:

Hu = G’d. (11]

The coefficient matrix G’ is numerically obtained (see Ap-

pendix II).

From the physical requirement, the distributions u and

a’ in (10) must satisfy the boundary conditions as follows:

u=v~ on the strip conductor, and (12a)

0’=0 except on the strip conductor. (12b)

It should be noted that the indirect bounda~ distribu-

tion o’ in ( 12b) can be calculated only on the conductor

strip. This is the reason why the indirect BEM, instead of

the conventional BEM, is utilized in this paper.

III. ANALYSIS OF SIDE-PROXIMITY EFFECT

The method proposed above is applicable to analyze the

side-proximity effect. First, the coordinates of a micro-

strip structure as shown in Fig. 1(b) are defined as shown

in Fig. 4(a). The boundary 17 is divided into four parts.

Numbers of each element are IVl, iVz, N3 and Nl, respec-

1Y

(b)

Fig. 4. (a) x-y coordinates for analysis. (b) Division of boundaries.

tively, and N = N1 + N2 + NJ + NA. At the non-smooth

points on the boundary, two neighboring points necessary

for the calculation are taken on both sides of this point.

By the discretization and by using the transformation in

(10), a set of linear equationsas(11) is obtained. The line

charger per unit length on the strip Q is then given by a’,

as follows:

Therefore the line capacitance C per unit length is given

as

(14)

where V. is unity. Letting Co be the line capacitance of a

line per unit length when the dielectric substrate is re-

moved off, the characteristic impedance Z and the phase

velocity factor A/h. of the line under the quasi-TEM ap-

proximation are given by the following equations [1 1]:

where O. is the velocity of light in free space, A. and h

are the wavelength in free space and the guided wave-

length of the line, respectively. ‘

IV. NUMERICAL RESULTS

The numerical analysis was first carried out for micro-

striplines without considering the side-proximity effect in

order to show the effectiveness of our method. The nu-

merical results are consistent with the results in other pa-

pers as are shown in Table L

Fig. 5 shows an excellent convergence of the numerical
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TABLE I

THE COMPARISON OF THE CHARACTERISTIC IMPEDANCE FOR MSL WITHOUT SIDE-PROXIMITY EFFECT

Parameter of MSL* Yamashita [3] PuceI [11] Yamashita [12] Schneider [ 13] This Theory

e, = 1.00,W/!-z = 1.0 126.20 126.61

6, = 4.20, W/h = 0.4 105.14

Cl = 12.9, W/h = 0.240 74.98

61 = 12.9, w/h = 0.732 49.86 —

*62 = 1.0, **Measured Data.

: 74 - with considering singularity

w

$ 72 –
6 ;

The number of nodes

wlh = 1.0, dlw = 25

S1=4.2, S2= I.O
N,=5, N2=13, N2=13

I 1 I 1 1 1

11 13 15 17 19 21

on strip conductor N3

Fig. 5. Convergence of the numerical results for characteristic impedance

as a function of the division number on the conductor strip.

(a)

(b)

Fig. 6. (a) Symmetrical microstrip-like structure. (b) Asymmetrical mi-
crostrip-like structure.

results for calculating the characteristic impedance as a

function of the division number of the conductor strip by

removing the singularity when compared with the data

without considering the singularity.

The numerical analysis for the structures considering

the side-proximity effects are carried out on symmetric

and asymmetric microstrip stntctures as shown in Fig. 6(a)

and (b).

Figs. 7 and 8 show the side-proximity effect on the

characteristic impedance Z and on the phase velocity fac-

tor h/A. as a function of normalized distance from one

side of the substrate d/w. In this calculation, the dielec-

tric constant of substrate e, = 12.9 (GaAs) and w/h is

taken as a parameter. The solid lines show the results of

126.7 126.55(126.60**) 126.43
106.0 105.42

— 75.00
50.00

---- ..-.. . \\. . . x. e, = 12.9 Q= 1.0

w/h = 0.1
‘. --

0.2
-. . . . . . .

‘----- 0.4

--------
-----

------- 0.8

z
w 40
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-- —------------- 1.4
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v 2.4

$ 20 — osymmetrica[ st. —–– Symmetrical st.
6
I
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0.05 0,1 0.2 0.5 1.0 2.0 5.0 10 20

d/w

Fig. 7. Side-proximity effect of characteristic impedance taking w/h as a
parameter.
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Side-proximity effect of phase velocity factor XIXO taking w/h as

a parameter.

the asymmetric structure and the dotted lines are for the
symmetric one.

Fig. 9 shows the side-proximity effect in the asymmet-

ric structure taking the dielectric constant of the substrate

as a parameter.

From these numerical results, both the characteristic

impedance and the phase velocity factor are found to be

increased by several percent when the conductor strip is

approaching to the side of substrate, i.e., d/w becomes

approximately unity. But where the strip departs from the
side-edge as far as d/w > 3, the side-proximity effect

becomes negligible.

Fig. 10(a) and (b) show the numerical results of the
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Fig. 9. Side-proximity effects of line characteristics taking dielectric con-

stant of substrate as a parameter.
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Fig. 10. (a) Side-proximity effects of 50 Q line. (b) Side-prcjximity effects
of 75 0 line,

TABLE 11

THE COEFFICIENTS OF THE POLYNOMIALS IN (16) BY THE LEAST :SQUARE METHOD

Coefficients of For 50 tl Lines For 750 Lines

the polynomials
in (16) For Z/ZO For Alho For ZIZO For Alicl

aO 0.10260 0.35531 0. 10795(+ 1)* 0.38488

al –0.28356(–1) –0.97956(–2) –0.51306(-1) –0.18297(–1)

a2 0,.42473(–2) 0.14674(–2) 0.13565(-2) 0.48318(–3)

ay 0.81551(–3) 0.27987(–3) 0.22557(–2) 0.80443(–3)

*Numbers in brackets (n) mean exponent: 10“

side-proximity effect for the 50 Q and 75 L? lines widely

used in microwave circuits. These results are applicable

to the design of MMIC’s and to the CAD of MMIC’S.

The numerical results for the characteristic impedance and

the phase velocity factor are also given in the simple
polynomials, obtained by the least-squares-method,

shown as follows:

(16)

where the ak’s are the coefficients as shown in Table II.

The error of these formulae is less than one percent.

V. CONCLUSION

In this paper, a new method of analysis based on the
indirect BEM which can remove the singularity of bound-

ary distribution in the microstrip-like structure is pro-

posed. The side-proximity effect of the microstriplines is

analyzed by using this method. From the numerical re-

sults, it is found that the characteristic impedance and
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{.
point: [xj+l, yj+l)

element --.,~+l ~

@

coordinate j pOint: [Xj, Yj)

rj “=<

rr i–1
Q

I
Y

point: i

1~
groundground

(Xi, yi) L.-.-xground

Fig. 12. Division of boundaries and coordinates for analysis.

Because the fundamental solution u* defined in (5a) and

(5b) is expressed as the difference between two natural

logarithmic functions with the same form, the integrals

defined above in (A3) and (A4) can be derived only for

one of these logarithms. The other ones may be found by

the same process. Here we choose one of the functions of

the fundamental solutions as

Fig. 11. Various microstrip-like strictures which can be analyzed by the

method proposed in this paper.

phase velocity factor are considerably affected by the side-

proximity effect. The numerical results for 50 !J and 750

lines are also given in simple polynomial formulas suit-

able for the CAD of MMIC’s.

The analysis proposed here is simple and convenient

for the analysis of the microstrip-like structures. It takes

only one minute of CPU time on a 16-bit personal com-

puter to obtain a set of results of the characteristic imped-

ance and the phase velocity factor with convergence of

less than one percent. This technique is also applicable to

various types of microstrip-like structures. For example,

it can be applied directly to the analysis of the structures

as shown in Fig. 11.

11~*=_....- in-.
2r r

(A6)

Then

au* 1 Rij

‘*=&= 27r F
(A7)

where

(A8a)X = @l(f)Xj + 42(i)xj+ 1

APPENDIX 1

DERIVATIVES OF THE ANALYTICAL EXP~ESSIONS ~OF THE

COEFFICIENT MATRIX ELEMENTS ~ij AND Gij

The elements of coefficient matrices ~ij and Gij from

(6) and (7) are given as follows:

Y = @l(~)Yj + @2(&)Yj+l (A8b)

1“= 4(X‘X,)2 + (y ‘j’’j)2

= J(x.$ + x~ – X;)2+ (ys’$ + y* – yi)2

Rjj = {((.x~ – x~).Y. + (Ym – Y{) (–~~)}/(~/z)

X. = +(Xj+, — Xj), Yf = ~(Yj+l – Yj)

Xm = j(~j+l + ‘j), Ym !(‘2 YJ+I ‘Yj)

where u* is the fundamental solution, rj is a linear bound-

ary element, ~ is the length of bounda~ element as shown

in Fig. 12 and *1, z(~) are linear interpolating functions.

For simplicity, the following integrals for the elements

are defined as

in the coordinates as in Fig. 12.

Defining the directional vector and the outward normal

vector of linear element 17j be lj and nj, respectively, as

shown in Fig. 12, we have

x, Y.
‘] = $/2 x + 4/2y’

(A9a)

(A9b)(A3)

and for simplicity the following variables are defined as

rm “~ rm
cos O=—

rm ‘ a = 4/2
(A4)

Thus the integrals in (A 1) and (A2) are rewritten as fol-

lows:

Aij = /ZJ~!~ + h~~), Gij = ,g~-1 + g!}). (A5)

rm = (X~ – .Xi)X + (y~ – Y;)y

rm = Irml = J(Xm – X,)2 + (Ym – yi)2.
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The integrals in (A3) and (A4) can be analytically ob-

tained and are given as follows:

(A lO)

(All)

where

= (1 + aces 6)11 + 12

=ln(l+2a cos0+a2)–(2+acos 0)

+ (1 + a cos 8) (a sin 0)211 + [(1 i a cos 0)2

– (a sin 0)2] 12

where ZI and 12 are given as follows

!
I

z, = 1.
d(

–I $2 +2acos O~ +a2

= IG,IP+=T’)
(–l+acos6

– tan-l
la sin el )1

!
I

12=
~+asin O df

-1 ~2 + 2acos0& + a2

=ln~2+2acos O\+a2

$2 –2acos0t + a2 “

(A13)

(A14)

(A15)

When the observation point i‘ exists in the processed

element rj, the latter integrals become singular but they

are found by taking their limit as follows:

h}j)(z) = () (A16)

( )(1)(2)=4 l–1.(~)i~.
g ij (A17)

The integral in (A16) vanishes because the boundary

points i considered in the derivation of the boundary in-

tegral equation are excluded from the range of integral.
The other integrals in the fundamentals in (5a) can be

obtained substituting the image point i ‘(xi – y,) into the

expressions by the point i(xi, yi ) and the elements of the

coefficient matrices are given by the difference between

these two integrals.

243

APPENDIX II

DERIVATION OF THE EXPRESSIONS OF THE COEFFICIENT

MATRIX ELEMENTS 6/j AND THE LINE CHARGE Q IN

UNIT LENGTH

A. Derivation of ~~j

d~lis given as Gij:

gP=;[Jr,@2@u*d@] (A19)

G:j = g$:~ ~ + gjj) (A20)

where x = (w/2!) sin 0, dx = (w/2) cos Od8, and @1,2(~)

are the interpolating functions of 0 which are defined as

41(0) = ~ (sin Oj+l – sin 0) (A21a)
J

#2(f3) = f (sin 19– sin Oj) (A21b)
1

where w is the width of the strip conductor, lJ is the length

of boundary element Tj.

Using the coordinates as shown in Fig. 12 in Appendix

I and substituting the fundamental solution u* which is

defined in (5) into (A19), we have

sin20–2a sin8+u2+f12
“in-,2 d(3, (A22)

sm 0–2asin O+a2+~’z

where

Xi ~=(Y– YJ ~, = (j + Yi) A23)

a=~’ w/2 ‘ w/2 “

The integrals in (A22) are found numerically by the

9-point Gaussian numerical integral method in our paper.

B. Derivation of Line Charge Q in Unit Length

The integral of Q defined in (13) can be considered as

a special case clf the integral in (A22) and is given as

where

A91 A cj
—._- —

A sj
sin OJ+l +—

A sj
(A25a)



244 IEEE TRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES, VOL 40, NO. 2, FEBRUARY 1992

A Oj A CJ

––~Sin Oj+~
—

J J

(A25b)

and A 0, A S and A C are given by

AOj = (3J+l – Oj (A26a)

Asj = sin 61+1 – sin 61 (A26b)

Asj = COS Oj+l – COS 61. (A26c)
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